viernes, 20 de noviembre de 2015

Estadística

La estadística descriptiva es una gran parte de la estadística que se dedica a recolectar, ordenar, analizar y representar a un conjunto de datos, con el fin de describir apropiadamente las características de este. Este análisis es muy básico. Aunque hay una tendencia a generalizar a toda la población, las primeras conclusiones obtenidas tras un análisis descriptivo, es un estudio calculando una serie de medidas de tendencia central, para ver en qué medida los datos se agrupan o dispersan en torno a un valor central.

La Estadística es la ciencia que se encarga de recolectar datos de una población o muestra. Los conceptos estadísticos se han trabajado intuitivamente desde la antigüedad, las primeras culturas recopilaban datos poblacionales por medio de censos como los realizados en Egipto por Moisés (según consta la Biblia) y el empadronamiento que fue efectuado por los romanos en Judea.
A partir del siglo XIX , entre otros, con el aporte de Adolphe Quetelet (1796-1874), se crearon diferentes métodos de cálculo de probabilidades para determinar y analizar el tipo de datos que regulan algunos fenómenos.
EstadísticaMedia Aritmética:
La media aritmética (también llamada promedio o simplemente media) de un conjunto finito de números es el valor característico de una serie de datos cuantitativos objeto de estudio que parte del principio de la esperanza matemática o valor esperado, se obtiene a partir de la suma de todos sus valores dividida entre el número de sumados. 
Por ejemplo, si en una habitación hay tres personas, la media de dinero que tienen en sus bolsillos sería el resultado de tomar todo el dinero de los tres y dividirlo a partes iguales entre cada uno de ellos. Es decir, la media es una forma de resumir la información de una distribución (dinero en el bolsillo) suponiendo que cada observación (persona) tuviera la misma cantidad de la variable.
La media aritmética se define como:
 \bar{x} = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1+a_2+\cdots+a_n}{n}
Por ejemplo, la media aritmética de 8, 5 y -1 es igual a:
 \bar{x} = \frac{ 8 + 5 + \left ( -1 \right ) }{3} = 4
Se utiliza la letra X con una barra horizontal sobre el símbolo para representar la media de una muestra (\overline{X}), mientras que la letra µ (mu) se usa para la media aritmética de una población, es decir, el valor esperado de una variable.
En otras palabras, es la suma de n valores de la variable y luego dividido por n : donde n es el número de sumados, o en el caso de estadística el número de datos se da el resultado
EstadísticaMediana:
La mediana representa el valor de la variable de posición central en un conjunto de datos ordenados.
Existen dos métodos para el cálculo de la mediana:
  1. Considerando los datos en forma individual, sin agruparlos.
  2. Utilizando los datos agrupados en intervalos de clase.

Datos sin agrupar

Sean x_1,x_2,x_3,\ldots,x_n los datos de una muestra ordenada en orden creciente y designando la mediana como M_e, distinguimos dos casos:

a) Si n es impar, la mediana es el valor que ocupa la posición (n+1)/2 una vez que los datos han sido ordenados (en orden creciente o decreciente), porque éste es el valor central. Es decir: M_e=x_{(n+1)/2}.
Por ejemplo, si tenemos 5 datos, que ordenados son: x_1 = 3x_2 = 6x_3 = 7x_4 = 8x_5 = 9 => El valor central es el tercero: x_{(5+1)/2} = x_3 = 7. Este valor, que es la mediana de ese conjunto de datos, deja dos datos por debajo (x_1x_2) y otros dos por encima de él (x_4x_5).

b) Si n es par, la mediana es la media aritmética de los dos valores centrales. Cuando n es par, los dos datos que están en el centro de la muestra ocupan las posiciones n/2 y n/2+1. Es decir: M_e = (x_{\frac{n}{2}} + x_{{\frac{n}{2}}+1})/2.
Por ejemplo, si tenemos 6 datos, que ordenados son: x_1 = 3x_2 = 6x_3 = 7x_4 = 8x_5 = 9x_6 = 10. Aquí dos valores que están por debajo del x_{\frac {6} {2}} = x_3 = 7 y otros dos que quedan por encima del siguiente dato x_{{\frac {6} {2}}+1} = x_4 = 8. Por tanto, la mediana de este grupo de datos es la media aritmética de estos dos datos: M_e = \frac {x_3 + x_4}{2} = \frac {7 + 8} {2}=7,5

Datos agrupados

Al tratar con datos agrupados, si  {{\frac {n} {2}}}  coincide con el valor de una frecuencia acumulada, el valor de la mediana coincidirá con la abscisa correspondiente. Si no coincide con el valor de ninguna abscisa, se calcula a través de semejanza de triángulos en el histograma o polígono de frecuencias acumuladas, utilizando la siguiente equivalencia:
\frac{N_i-N_{i-1} }{a_i-a_{i-1} }=\frac{\frac{n}{2}-N_{i-1} }{p}\Rightarrow p=\frac{\frac{n}{2}-N_{i-1} }{N_i-N_{i-1} }(a_i-a_{i-1})
Donde N_{i} y N_{i-1} son las frecuencias absolutas acumuladas tales que N_{i-1} < {{\frac {n} {2}}} < N_{i}a_{i-1} y a_{i} son los extremos, interior y exterior, del intervalo donde se alcanza la mediana y M_e=a_{i-1}+p es la abscisa a calcular, la mediana. Se observa que a_{i} - a_{i-1} es la amplitud de los intervalos seleccionados para el diagrama.

Ejemplos para datos sin agrupar

Ejemplo 1: Cantidad (N) impar de datos

xifiNi
122
224
348
4513
5821 > 19.5
6930
7333
8437
9239
Las calificaciones en la asignatura de Matemáticas de 39 alumnos de una clase viene dada por la siguiente tabla:
Calificaciones123456789
Número de alumnos224589342
Primero se hallan las frecuencias absolutas acumuladas N_i. Así, aplicando la fórmula asociada a la mediana para n impar, se obtiene X (39+1) / 2 = X 20 .
  • Ni-1< n/2 < Ni = N19 < 19.5 < N20
Por tanto la mediana será el valor de la variable que ocupe el vigésimo lugar.En este ejemplo, 21 (frecuencia absoluta acumulada para Xi = 5) > 19.5 con lo que Me = 5 puntos, la mitad de la clase ha obtenido un 5 o menos, y la otra mitad un 5 o más.

Ejemplo 2: Cantidad (N) par de datos

Las calificaciones en la asignatura de Matemáticas de 38 alumnos de una clase viene dada por la siguiente tabla (debajo):
Calificaciones123456789
Número de alumnos224569442
xifiNi+w
122
224
348
4513
5619 = 19
6928
7432
8436
9238
Primero se hallan las frecuencias absolutas acumuladas N_i. Así, aplicando la fórmula asociada a la mediana para n par, se obtiene la siguiente fórmula:  X = n/2 ==> X =(38 / 2) => X =19 (Donde n= 38 alumnos divididos entre dos).
  • Ni-1< n/2 < Ni = N18 < 19 < N19
Con lo cual la mediana será la media aritmética de los valores de la variable que ocupen el decimonoveno y el vigésimo lugar. En el ejemplo el lugar decimonoveno lo ocupa el 5 y el vigésimo el 6 con lo que Me = (5+6)/2 = 5,5 puntos, la mitad de la clase ha obtenido un 5,5 o menos y la otra mitad un 5,5 o más.

Ejemplo para datos agrupados

Entre 1.50 y 1.60 hay 2 estudiantes.
Entre 1.60 y 1.70 hay 5 estudiantes.Mediana= 1.60 + \left( \frac{(7/2)-2}{5} \right)0.1=1.63
EstadísticaModa
La moda es el valor con una mayor frecuencia en una distribución de datos.
Se hablará de una distribución bimodal de los datos adquiridos en una columna cuando encontremos dos modas, es decir, dos datos que tengan la misma frecuencia absoluta máxima. Una distribución trimodal de los datos es en la que encontramos tres modas. Si todas las variables tienen la misma frecuencia diremos que no hay moda.
El intervalo moanolo es el de mayor frecuencia absoluta. Cuando tratamos con datos agrupados antes de definir la moda, se ha de definir el intervalo modal.
La moda, cuando los datos están agrupados, es un punto que divide al intervalo modal en dos partes de la forma p y c-p, siendo c la amplitud del intervalo, que verifiquen que:
\frac{p}{c-p}=\frac{n_i-n_{i-1} }{n_i-n_{i+1} }
Siendo la frecuencia absoluta del intervalo modal las frecuencias absolutas de los intervalos anterior y posterior, respectivamente, al intervalo modal.